WIP and WICH/WIRE co-ordinately control invadopodium formation and maturation in human breast cancer cell invasion
نویسندگان
چکیده
Cancer cells form actin-rich degradative protrusions (invasive pseudopods and invadopodia), which allows their efficient dispersal during metastasis. Using biochemical and advanced imaging approaches, we demonstrate that the N-WASP-interactors WIP and WICH/WIRE play non-redundant roles in cancer cell invasion. WIP interacts with N-WASP and cortactin and is essential for invadopodium assembly, whereas WICH/WIRE regulates N-WASP activation to control invadopodium maturation and degradative activity. Our data also show that Nck interaction with WIP and WICH/WIRE modulates invadopodium maturation; changes in WIP and WICH/WIRE levels induce differential distribution of Nck. We show that WIP can replace WICH/WIRE functions and that elevated WIP levels correlate with high invasiveness. These findings identify a role for WICH/WIRE in invasiveness and highlight WIP as a hub for signaling molecule recruitment during invadopodium generation and cancer progression, as well as a potential diagnostic biomarker and an optimal target for therapeutic approaches.
منابع مشابه
Effects of combined 5-Fluorouracil and ZnO NPs on human breast cancer MCF-7 Cells: P53 gene expression, Bcl-2 signaling pathway, and invasion activity
Objective(s): The significant contribution of nanoparticles to cancer treatment has attracted therapeutic attention. The present study aimed to evaluate the synergistic effects of 5-fluorouracil (5-FU) and zinc oxide nanoparticles (ZnO NPs) as multimodal drug delivery on human breast cancer MCF-7 cells.Materials and Methods: In this in-vitro study, the impact of 5-FU and ZnO NPs in the sin...
متن کاملMolecular mechanisms of invadopodium formation
Invadopodia are actin-rich membrane protrusions with a matrix degradation activity formed by invasive cancer cells. We have studied the molecular mechanisms of invadopodium formation in metastatic carcinoma cells. Epidermal growth factor (EGF) receptor kinase inhibitors blocked invadopodium formation in the presence of serum, and EGF stimulation of serum-starved cells induced invadopodium forma...
متن کاملSNAP23, Syntaxin4, and vesicle-associated membrane protein 7 (VAMP7) mediate trafficking of membrane type 1–matrix metalloproteinase (MT1-MMP) during invadopodium formation and tumor cell invasion
Movement through the extracellular matrix (ECM) requires cells to degrade ECM components, primarily through the action of matrix metalloproteinases (MMPs). Membrane type 1-matrix metalloproteinase (MT1-MMP) has an essential role in matrix degradation and cell invasion and localizes to subcellular degradative structures termed invadopodia. Trafficking of MT1-MMP to invadopodia is required for th...
متن کاملAdhesion rings surround invadopodia and promote maturation
Invasion and metastasis are aggressive cancer phenotypes that are highly related to the ability of cancer cells to degrade extracellular matrix (ECM). At the cellular level, specialized actin-rich structures called invadopodia mediate focal matrix degradation by serving as exocytic sites for ECM-degrading proteinases. Adhesion signaling is likely to be a critical regulatory input to invadopodia...
متن کاملAnti-invasion Effects of Cannabinoids Agonist and Antagonist on Human Breast Cancer Stem Cells
Studies show that cancer cell invasion or metastasis is the primary cause of death inmalignancies including breast cancer. The existence of cancer stem cells (CSCs) in breast cancermay account for tumor initiation, progression, and metastasis. Recent studies have reporteddifferent effects of cannabinoids on cancer cells via CB1 and CB2 cannabinoid receptors. In thepresent study, the effects of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016